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separations. Other parameters are the same as in Fig. 2. The curves  The Influence of Ground-Plane Width on the
have been obtained from the far-field angular intensity distribution Ohmic Losses of Coplanar Waveguides
with Finite Lateral Ground Planes
1 k2 cos? 9
2wkr [Sm(51)]? + [Re(B1) — ksin 9]?

|6(r, 9))? ~ |a1|* (10) Giovanni Ghione and Michele Goano

. . . . . Abstract—In this paper, analytical computer-aided-design (CAD)-
with the angular divergence\ defined as the half-width of this oriented conformal-mapping approximations are presented for the

distribution. Herey is an angle between the vector= (x, z) and  high-frequency attenuation of symmetric and asymmetric coplanar
the positivex-axis, andr = |r|. Equation (10) has been calculatedvaveguides (ACPW's) with finite-extent lateral ground planes. A
with the help of a appropriate two-dimensional (2-D) diffractiorfliscussion is presented on the effect of ground-plane width on the losses,
integral [7]. and design criteria are derived.

It is seen from Fig. 5 that the value of decreases and becomes a Index Terms—Attenuation, conformal mapping, coplanar waveguides,
smoother function ofl when the grating separation becomes largefiesign automation software.
This is a consequence of a weaker coupling of the guided mode
with the grating at large separations and smaller changes of the |
propagation parameters with the varying grating period. Smoothing of o ) )
the A-curves goes together with the narrowing of the radiated beams COPlanar waveguides (CPW's) are currently used extensively in

It is a fortunate property for applications, where the wide scannifgfth microwave integrated circuits (MIC's) and electro-optic com-
angles and narrow beams are of great importance. ponents on LiNb@® substrates. In practice, such lines always have

ground planes of finite width, as shown in the insets of Figs. 1 and

2 for the symmetric CPW and the asymmetric CPW, respectively.
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Fig. 1. Normalized attenuation for symmetric CPW (see inset) with finitejg 2 Normalized attenuation for asymmetric CPW (see inset) with finite
ground-plane width versus the line impedance for several values of thgyund-plane width versus the line impedance for several values of the
normalized ground-plane width. The strip thickness ig/b = 0.01 and  npormalized ground-plane width. The strip thickness ig/b = 0.01 and

the GaAs substratée, = 13) is thick (h/b > 1). the GaAs substratée, = 13) is thick (h/b 3> 1).

based on the high-frequency current distribution can still be assumgRere K is the complete elliptic integral of the first kind, and
as the basis to investigate the effect of the geometry on the attenuation

of thin lines (i.e., such that the line thickness is much smaller than the [1-#2,

strip width2a, the slot widthb —«, and the ground-plane width-1b). k= 1_ k2.
Moreover, by introducing an equivalent line thickness, skin-effect e
formulas can be readily exploited so as to generate approximations kap =a/b
able to also cover the low-frequency range, as discussed in [8]. kve =b/c

The skin-effect loss analysis is based on the well-known expression

. . koe =afec.
of the per-unit-length conductor loss attenuatian afe

Analytical approximations to the effective permittivity;; " and
R - characteristic impedancBS™Y of the line have been presented in
P fuﬁ di

e = 5 (1) [1, eq. (17a), (17b), (18)]. Far — oo, one hasks. — 0, ky. — 0,
and (2) yields, in the limit, the expression for the attenuation of the

standard CPW with infinite lateral ground planes [4, eq. (45)].

whereR; is the surface resistancg, is the line impedancd, is the
total current carried by the ling, is the current density, and the lineB. Asymmetric CPW

integral is defined on the conductor periphery. The asymmetric CPW (ACPW) with finite-extent ground plane
coincides with the asymmetric coplanar strip line (CPS) discussed
A. Symmetric CPW in [4]. The characteristic parameters and attenuation of this structure

can be derived from the expressions in [4] by performing a change

~ The high-frequency current density of the symmetric CPW Wit notation. The attenuation of the ACPW with finite ground plane
finite-extent ground planes can be approximated through the stafic 4 [4, eq. (54)]

charge distribution of the line, which in its turn is estimated by

means of conformal mapping according to the technique in [4]. acpw _ RBaJebf™V

Some modifications are implemented with the aim to exploit the line ~ “* T 4807 K (ky) K (E)

symmetry. The square of the current density can be integrated on the Ta 1

line periphery in closed form if the line thickness is much smaller X {{1%‘ < P h) + Tr} %

than the strip, slot, and ground-plane widths, as discussed in [4]. dr(e—b - 1
After straightforward but lengthy analytical manipulations, one finally + |:log "71‘@) + w}
obtains the following result for the symmetric CPW attenuation: c—b

)
t
n [10g <mk;) n ,r} 1
t b—a
QCPVV _ RS 4 /ggé)w N P 477(@ + C) }‘/ +r 1 (3)
c 4807‘1’[&’(}61)[&’(131)(1 — ]{3[)) g —t v 7 a + p
1 8ma 1 —kap 14 kac
—|log | — 7 where
- {a‘ {Ot’( t L+ ka 1—kac> J”}
b Mg (870 L= Fap 1= ke 11— Kae by = L= Fur Tt Fac
b\ Tk Tk ) TR Tt Fap 1= Fac

N 1|:10g <% 1+ kac 1—1{;7,7) 7‘_} 1k, 2 } The effective permittivitye’r™"" and the characteristic impedance
¢ t 1—kae 14kpe 1-k2, 7" Z2“"% may be obtained by replacifig— k2,b1 —a — a,bj+a —
(2) bandby + b2 — cin [4, eq. (12), (55)].
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In order to validate the expression proposed, the attenuation
of several symmetric and asymmetric lines was computed as a
function of the ground-plane width by means of two state-of-the-art
electromagnetic simulators, HF5&nd Exploref and compared with
the present approach. The corrections in [8] were also implemented
for the sake of comparison.

The behavior shown in Fig. 3 is typical for all cases considered.
As expected, the correction in [8] is not overly significant in the skin-

o AT e effect regime, and leads to a very small decrease in the attenuation.
= : e The attenuation as evaluated by HEE#Sough its 2-D Wave Module
was consistently found to be slightly lower than the one provided by
; the present approach; however, convergence studies reveal a little
1 3 increase of the HFSS result with increasing port field accuracy and
‘ denser discretization mesh. Since the accuracy criterion exploited by
HFSS is based on the self-consistency of the field distribution, the
convergence in the attenuation turns out to be very slow, so that

. . . ) computational limitations do not practically enable one to ascertain
Fig. 3. Attenuation of asymmetric CPW on a thick GaAs substrate vers

ground-plane width as computed from (2) (continuous line) and including ﬂ)'@net[her the dls.crepan.cy (which has been Ok?ser"e‘,’ also by Othe.r In-
correction in [8] (dashed line). Dots and triangles are the results obtain@stigators [9]) is physical, or rather a numerical artifact. Concerning
from the HFS$ and Explore? electromagnetic simulators. The line width isExplorer, the agreement turns out to be good, although some care

2a = 140 pm and the ground-plane spacinglis- a = 30 um; the line  must be exerted, since this simulator sometimes yields anomalous
thickness is5 pm and the frequency is 5 GHz. results with respect to frequency

A Explorer |
e HFSS

o, Np/m

0 50 100 150 200 250

Ground width, pm

IV. CONCLUSIONS

Ill. RESULTS AND DISCUSSION Analytical expressions for the high-frequency conductor losses of

The conductor attenuation for a symmetric and asymmetric prmmetric and asymmetric CPW’s with lateral ground planes of finiFe
with finite ground planes on a thick GaAs, = 13) substrate was width have _been presented. The decrease of the ground-pla_ne width
evaluated for several values of the line aspect rafib, taking as a causes an increase of the_ ;onductor attenuation .and a shift of the
parameter the ratio/b. The normalized attenuatidn./ R, is plotted ©Ptimum impedance for minimum losses toward higher values. The
versus the line impedance in Figs. 1 and 2 for the symmetric Ca%féect of finite-width ground planes is shown to be negllglb_le on the
and asymmetric case, respectively; the normalized line thicknesd!i€ 0Sses (less than 10% increase with respect to the ideal case)
#/b = 0.01. Since in this case.z ~ (e, +1)/2, the behavior shown if the conditionsc > 2b (symmetric case) and> 3.5b (asymmetric
holds for arbitrary substrate permittivity, provided that the impedanC&S€) are met.
and attenuation are suitably rescaled.

As expected, if all the line dimensions are kept constant and the
ground-plane width: is decreased, the attenuation always increaseﬁl] G. Ghione and C. U. Naldi,
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